树状数组彻底入门,算法小白都看得懂的超详细解析

树状数组  重点是在树状的数组

大家都知道二叉树吧

叶子结点代表A数组A[1]~A[8]

 

 .......

现在变形一下

 现在定义每一列的顶端结点C[]数组 

 如下图

 

 

C[i]代表 子树的叶子结点的权值之和// 这里以求和举例

如图可以知道

C[1]=A[1];

C[2]=A[1]+A[2];

C[3]=A[3];

C[4]=A[1]+A[2]+A[3]+A[4];

C[5]=A[5];

C[6]=A[5]+A[6];

C[7]=A[7];

C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

下面观察如下图

将C[]数组的结点序号转化为二进制

1=(001)      C[1]=A[1];

2=(010)      C[2]=A[1]+A[2];

3=(011)      C[3]=A[3];

4=(100)      C[4]=A[1]+A[2]+A[3]+A[4];

5=(101)      C[5]=A[5];

6=(110)      C[6]=A[5]+A[6];

7=(111)      C[7]=A[7];

8=(1000)    C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

对照式子可以发现  C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i]; (k为i的二进制中从最低位到高位连续零的长度)例如i=8时,k=3;

可以自行带入验证;

现在引入lowbit(x) 

lowbit(x) 其实就是取出x的最低位1  换言之  lowbit(x)=2^k  k的含义与上面相同 理解一下

下面说代码

  1. int lowbit(int t)
  2. {
  3. return t&(-t);
  4. }
  5. //-t 代表t的负数 计算机中负数使用对应的正数的补码来表示
  6. //例如 :
  7. // t=6(0110) 此时 k=1
  8. //-t=-6=(1001+1)=(1010)
  9. // t&(-t)=(0010)=2=2^1

C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i];

C[i]=A[i-lowbit(i)+1]+A[i-lowbit(i)+2]+......A[i];

 

*************************************************分割线

区间查询

ok 下面利用C[i]数组,求A数组中前i项的和 

举个例子 i=7;

sum[7]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7] ;   前i项和

C[4]=A[1]+A[2]+A[3]+A[4];   C[6]=A[5]+A[6];   C[7]=A[7];

可以推出:   sum[7]=C[4]+C[6]+C[7];

序号写为二进制: sum[(111)]=C[(100)]+C[(110)]+C[(111)];

 

再举个例子 i=5

sum[5]=A[1]+A[2]+A[3]+A[4]+A[5] ;   前i项和

C[4]=A[1]+A[2]+A[3]+A[4];   C[5]=A[5];

可以推出:   sum[5]=C[4]+C[5];

序号写为二进制: sum[(101)]=C[(100)]+C[(101)];

 

细细观察二进制 树状数组追其根本就是二进制的应用

结合代码

  1. int getsum(int x)
  2. {
  3. int ans=0;
  4. for(int i=x;i>0;i-=lowbit(i))
  5. ans+=C[i];
  6. return ans;
  7. }

对于i=7 进行演示 

                                  7(111)          ans+=C[7]

lowbit(7)=001  7-lowbit(7)=6(110)    ans+=C[6]

lowbit(6)=010  6-lowbit(6)=4(100)    ans+=C[4]

lowbit(4)=100  4-lowbit(4)=0(000)    

对于i=5 进行演示 

                                  5(101)           ans+=C[5]

lowbit(5)=001  5-lowbit(5)=4(100)    ans+=C[4]

lowbit(4)=100  4-lowbit(4)=0(000)   

 

*************************************************分割线

单点更新

 

当我们修改A[]数组中的某一个值时  应当如何更新C[]数组呢?

回想一下 区间查询的过程,再看一下上文中列出的图

 

结合代码分析

  1. void add(int x,int y)
  2. {
  3. for(int i=x;i<=n;i+=lowbit(i))
  4. tree[i]+=y;
  5. }
  6. //可以发现 更新过程是查询过程的逆过程
  7. //由叶子结点向上更新C[]数组

 

如图: 

当更新A[1]时  需要向上更新C[1] ,C[2],C[4],C[8]

                     C[1],   C[2],    C[4],     C[8]

写为二进制  C[(001)],C[(010)],C[(100)],C[(1000)]

                                      1(001)        C[1]+=A[1]

lowbit(1)=001 1+lowbit(1)=2(010)     C[2]+=A[1]

lowbit(2)=010 2+lowbit(2)=4(100)     C[4]+=A[1]

lowbit(4)=100 4+lowbit(4)=8(1000)   C[8]+=A[1]

 

相关题目:

http://poj.org/problem?id=2299   

http://codeforces.com/contest/703/problem/D   

http://acm.zcmu.edu.cn/JudgeOnline/problem.php?cid=1270&pid=3  

  • 158
    点赞
  • 382
    收藏
    觉得还不错? 一键收藏
  • 31
    评论
很抱歉,根据提供的引用内容,没有找到关于迪杰斯特拉算法树状数组优化的信息。但是,我可以为您介绍一下迪杰斯特拉算法树状数组的基本概念和应。 迪杰斯特拉算法,也称为狄克斯特拉算法,是一种用于解决图中最短路径问题的算法。该算法的基本思想是从起点开始,逐扩展到距离起点更远的节点,直到到达终点为止。在扩展的过程中,通过比较不同路径的距离,选择距离最短的路径进行扩展,直到到达终点。 树状数组,也称为二叉索引树,是一种用于高效维护序列前缀和的数据结构。该数据结构可以在O(log n)的时间内完成单点修改和区间查询操作,因此被广泛应用于解决各种算法问题,如逆序对问题、区间最大值/最小值问题等。 虽然迪杰斯特拉算法树状数组看似没有直接关系,但是在解决某些特定的问题时,两者可以结合使用,以达到更高效的解决方案。例如,在解决带权图最短路径问题时,可以使用迪杰斯特拉算法结合树状数组进行优化,以达到更快的计速度。 具体来说,可以使用树状数组维护一个优先队列,用于存储当前已经扩展的节点和它们的距离。在每次扩展节点时,可以使用树状数组快速找到距离最小的节点,并将其从队列中删除。这样可以避免使用传统的堆数据结构,从而提高算法的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值